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Growth-based optimization algorithm for lattice heteropolymers
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An improved version of the pruned-enriched-Rosenbluth method~PERM! is proposed and tested on finding
lowest energy states in simple models of lattice heteropolymers. It is found to outperform not only the previous
version of PERM, but also all other fully blind general purpose stochastic algorithms which have been em-
ployed on this problem. In many cases, it found new lowest energy states missed in previous papers. Limita-
tions are discussed.
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Lattice polymers have been studied intensively to und
stand protein folding, one of the central problems of com
tational biology. A popular model used in these studies is
so-called HP model@1,2# where only two types of mono
mers,H ~hydrophobic! and P ~polar! ones, are considered
Hydrophobic monomers tend to avoid water which they c
do only by mutually attracting themselves. The polymer
modeled as a self-avoiding chain on a regular~square or
simple cubic! lattice with interactions (eHH ,eHP ,ePP)5
2(1,0,0) between neighboring nonbonded monomers.

This model might be too simple to represent finer deta
of real protein folding@3#, but this is not our concern. We us
the search for its ground states as a paradigmatic exampl
combinatorial optimization, with a large body of existin
benchmarks.

A wide variety of computational strategies have been e
ployed to simulate and analyze these models, including c
ventional ~Metropolis! Monte Carlo schemes with variou
types of moves@4–6#, chain growth algorithms without@7#
and with resampling@8–10# ~see also@11#!, genetic algo-
rithms @12,13#, parallel tempering@14# and generalizations
thereof @15,16#, an ‘‘evolutionary Monte Carlo’’ algorithm
@17#, and others@18#. In addition, Yue and Dill@19# also
devised an exact branch-and-bound algorithm specific for
sequences on cubic lattices, which gives all low energy st
by exact enumeration and typically works forN&70280.

It is the purpose of the present paper to present an
proved variant of the pruned-enriched Rosenbluth met
~PERM! @20# and to apply it to lattice proteins. PERM is
biased chain growth algorithm with resampling~‘‘population
control’’! and depth-first implementation. It is built on th
old idea of Rosenbluth and Rosenbluth@21# to use a biased
growth algorithm for polymers, where the bias is correc
by means of giving a weight to each sample configurati
While the chain grows by adding monomers, this weig
~which also includes the Boltzmann weight if the system
thermal! will fluctuate. PERM suppresses these fluctuatio
by ‘‘pruning’’ configurations with too low weight and by
‘‘enriching’’ the sample with copies of high-weight configu
rations@20#. These copies are made while the chain is gro
ing, and continue to grow independently of each oth
PERM can be viewed as a special realization of a ‘‘go-wi
the-winners’’ strategy@22# and indeed dates back to the b
ginning of the Monte Carlo simulation era, when it w
called ‘‘Russian roulette and splitting’’@23#. Among statisti-
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cians, this approach is also known as sequential importa
sampling with resampling@24#.

Pruning and enrichment are done by choosing thresh
Wn

, andWn
. depending on the estimate of the partition su

of n-monomer chains~see below for their actual determina
tion!. If the current weightWn of ann-monomer chain is less
thanWn

, , the chain is discarded with probability 1/2, othe
wise it is kept and its weight is doubled. Many alternatives
this simple choice are discussed in Ref.@24#, but we found
that more sophisticated strategies had little influence on
efficiency, and thus we kept the above in the present wo
On the contrary, we found that different strategies in bias
and, most of all, in enrichment had a big effect, and it is h
where the present variant differs from those in Refs.@8,9#.
There, high-weight configurations were simply cloned a
the weight was uniformly shared between the clones.
relatively high temperatures this is very efficient@20#, since
each clone has so many possibilities to continue that dif
ent clones very quickly become independent from each ot
This is no longer the case for very low temperatures. Th
we found that clones often evolved in the same directi
since one continuation has a much higher Boltzmann we
than all others. Thus, cloning is no longer efficient in cre
ing configurational diversity, which was the main reason w
it was introduced.

The main modification made in the present paper is t
that we no longer makeidentical clones. Rather, when we
have a configuration withn21 monomers, we first estimat
a predictedweight Wn

pred for the next step, and we count th
numberkfree of free sites where thenth monomer can be
placed. If kfree.1 andWn

pred.Wn
. , we choose 2<k<kfree

differentsites among the free ones and continue withk con-
figurations which areforced to be different. Thus, we avoid
the loss of diversity which limited the success of old PER
Typically, we usedk5min$kfree,dWn

pred/Wn
.e%.

When selecting ak tuple A5$a1 , . . . ,ak% of mutually
different continuationsa j with probability pA , the corre-
sponding weightsWn,a1

, . . . ,Wn,ak
are

Wn,a j
5

Wn21qa j
kfree

kS kfree

k D pA

, ~1!

where theimportance qa j
5exp(2bEn,aj

) of choicea j is the
©2003 The American Physical Society13-1
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Boltzmann-Gibbs factor associated with the energyEn,a j
of

the newly placed monomer in the potential created by
previous monomers. The other terms arise from correc
bias and normalization, see Ref.@25# for a more thorough
discussion. Choosing

pA5

(
aPA

qa

(
A8

(
a8PA8

qa8

~2!

would result in usual importance sampling@25#. However,
instead ofqa we use the modified importancesq̃a5(kfree

(a)

11/2)qa in Eq. ~2!, kfree
(a) being the number of free neighbo

when thenth monomer is placed ata. This replacement is
made since we anticipate that continuations with less
neighbors will contribute less on the long run than contin
ations with more free neighbors. This is similar to ‘‘Marko
ian anticipation’’ @26# within the framework of old PERM,
where a bias different from the short-sighted optimal imp
tance sampling was found to be preferable. Consequently
predicted weight isWn

pred5Wn21(aq̃a ,
A noteworthy feature of new PERM is that it crosses ov

to complete enumeration whenWn
, andWn

. tend to zero. In
this limit, all possible branches are followed and none
pruned as long as its weight is not strictly zero. In contras
this, old PERM would have made infinitely many copies
the same configuration. This suggests already that we ca
more lenient in choosingWn

, andWn
. . For the first configu-

ration hitting lengthn, we usedWn
,50 andWn

.5`, i.e., we
neither pruned nor branched. For the following configu
tions, we usedWn

.5Zn /Z0(cn /c0)2 and Wn
,50.2Wn

. .
Here, cn is the total number of configurations of lengthn
already created during the run andZn is the partition sum
estimated from these configurations.

In PERM, we work at a fixed temperature~no annealing!,
and successive ‘‘tours’’@20# are independent except for th
thresholdsWn

,,. which use partially the same partition su
estimates. Results are less sensitive to the precise choi
temperature than they were for old PERM. In general,
temperatures in the range 0.25,T,0.35 gave good result
for ground state search. In the following, when we qu
numbers of ground state hits or CPU times between s
hits, these are alwaysindependenthits. The actual number
of ~dependent! hits are much larger.

We now present our results. Special comparison is m
with the core-directed growth method~CG! of Beutler and
Dill @11#, the only method we found to be still competitiv
with ours. We emphasize, however, that the CG meth
works only for the HP model and relies heavily on heuristi
in contrast to our fully blind general purpose approach.

~a! We first tested the ten 48-mers from Ref.@4#. As with
old PERM, we could reach lowest energy states for all
them, but within much shorter CPU times. For all ten chai
we used the same temperature, exp(1/T)518, although we
could have optimized CPU times by using different tempe
tures for each chain.
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The CPU times for new PERM in Table I are typical
one order of magnitude smaller than those in Ref.@11#, ex-
cept for sequence No. 9 whose lowest energy was not h
Ref. @11#. Since in Ref.@11# a SPARC 1 machine was use
which is slower by a factor of'10 than the 167-MHz Sun
ULTRA I used here, this means that our algorithms ha
comparable speeds. We note that introducing a simple c
figurational bias in new PERM@27# can already give a con
siderable speed up; in this contribution, however, we wan
concentrate on blind search.

~b! Next we studied the two 2D~two-dimensional! HP
sequences of lengthN5100 of Ref. @5#. They were origi-
nally thought to have ground states fitting into a 10310
square with energies244 and246 @5#, but in Ref.@9# con-
figurations fitting into this square were found with low
energies. Moreover, when configurations were allowed
have arbitrary shape, even lower energies were fo
@9,10,15#. In the present work, we studied only configur
tions of the latter type. The lowest energies known by n
are248 @10# resp.250 @15#. The CPU times needed to fin
them were 48 min respectively 50 h, on machines w
'500 MHz. In contrast, new PERM needed on average
min respectively 5.8 h on a 667-MHz DEC Alpha 2126
between any two hits.

~c! Several 2D HP sequences were introduced in R
@12#, where the authors tried to fold them using a gene
algorithm. Except for the shortest chains they were not s
cessful, but putative ground states for all of them were fou
in Refs. @9,14,15#. But for the longest of these chains (N
564), the ground state energyEmin5242 was found in Ref.
@9# only by means of special tricks which amount to no
blind search. With blind search, the lowest energy reached
PERM was239. We should stress that PERM as used
Ref. @9# was blind for all cases except this 64-mer~and when
it found E5249 for the secondN5100 chain of Ref.@5#!,
in contrast to statements to the contrary made in Ref.@17#.

TABLE I. Performances for the 3D Binary~HP! sequences from
Ref. @4#.

Sequence 2Emin
a PERMb New PERMc New PERMd

No. with bias@27#

1 32 6.9 0.63 0.13
2 34 40.5 3.89 0.23
3 34 100.2 1.99 0.71
4 33 284.0 13.45 6.57
5 32 74.7 5.08 2.55
6 32 59.2 6.60 1.44
7 32 144.7 5.37 3.35
8 31 26.6 2.17 0.46
9 34 1420.0 41.41 10.53
10 33 18.3 0.47 0.08

aGround state energies@4#.
bCPU times~minutes! per independent ground state hit, on 16
MHz Sun ULTRA I work station; from Ref.@9#.
cCPU times~minutes!, same machine
dCPU times~minutes!, same machine.
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TABLE II. Newly found lowest energy states for binary sequences with interactionseW5(eHH ,eHP ,ePP)52(1,0,0).

Old New CPU
N d Sequence Emin @Reference# Emin e1/T timea

example conformationb

85 2 H4P4H12P6H12P3H12P3H12P3HP2H2P2H2P2HPH 252 @17# 253 90 0.03
f lb3l f 4l f 2rbrbr f r 2f 3l 2b2l f 2lbl 2f r f l 2b2lbr 2b3rb3l 2f r f l f 3lb5l f 2l f r f l f r f l f r f r

58 3 PHPH3PH3P2H2PHPH2PH3PHPHPH2P2H3P2HPHP4HP2HP2H2P2HP2H 242 @18# 244 30 0.19
ubl f l2ur f ldr f rbrub2l f 3lublbrurd f rubdblbu f ldbl f ldr2bd f dlu

103 3 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HPHP2 249 @18# 254 @27# 60 3.12
HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2

u f rbd f l f urd f u2rd2buru f2ulbluld2burdrubrdl2bu f ldbl f ul f2rd
bd2b2u f lu f d3f ururd2f u2ru2ld f 2urbl2dbdlbul f ru2

124 3 P3H3PHP4HP5H2P4H2P2H2P4HP4HP2HP2H2P3H2PHPH3P4H3P6 258 @18# 271 90 12.3
H2P2HP2HPHP2HP7HP2H3P4HP3H5P4H2PHPHPHPH

urbd2bubl f urb2dr f 5ub4u f luld f ru f rbd f rbubd2bur f3dlbrb3d f2

l f 3urdb2d2lu f lb2rbr f dr f rubulbu f2u2b2d f rbd f2dld f2u2bdrurbul f l
136 3 HP5HP4HPH2PH2P4HPH3P4HPHPH4P11HP2HP3HPH2P3H2P2HP2 265 @18# 280 120 110

HPHPHP8HP3H6P3H2P2H3P3H2PH5P9HP4HPHP4

u2b2rdl 2f rbdrdl f 2l f r 2brblu3f d2rbubd2r 2d f3dl2ul2blbrd f rurbldrbul2b
rdrur f 2ur f 2ububdlu2bd2blurul2d2ldr 4ubld2l 2urubu3brd2f 2u2ld2ldbubu

aHours per independent hit on 667-MHz DEC ALPHA 21264.
br5right, l5left, f5forward,b5backward,u5up, d5down.
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We now found putative ground states for all chains of R
@12# with blind search. For the 64-mer, the average CPU ti
per hit was ca. 30 h on the DEC 21264, which seems to
roughly comparable to the CPU times needed in Re
@14,15#, but considerably slower than Ref.@11#. This se-
quence is particularly difficult for any growth algorithm, an
the fact that we now found it is particularly noteworthy.

On the other hand, new PERM was much faster than R
@11# for the sequence withN560 of @12#. It needed'10 s
on the DEC 21264 to hitEmin5236 and'0.1 s to hitE5
235. In contrast,E5236 was never hit in Ref.@11#, while
it took 97 min to hitE5235.

~d! An 85-mer 2D HP sequence was given in Ref.@28#,
where it was claimed to haveEmin5252. Using a genetic
algorithm, the authors could find only conformations w
E>247. In Ref.@17#, using a newly developedevolutionary
Monte Carlomethod, the authors found the putative grou
state when assuming large parts of its known structure
constraints. This amounts, of course, to nonblind sea
Without these constraints, the putative ground state was
hit in Ref. @17# either, although the authors claimed the
algorithm to be more efficient than all previous ones. W
easily found states withE5252, but we also found many
conformations withE5253. At exp(1/T)590, it took ca.
10 min CPU time between successive hits on the S
ULTRA 1.

~e! Four 3D HP sequences withN558, 103, 124, and 136
were proposed in Refs.@29,30# as models for actual protein
or protein fragments. Low energy states for these seque
were searched in Ref.@18# using a newly developed an
supposedly very efficient algorithm. The energies reache
Ref. @18# wereE5242, 249, 258, and265, respectively.
We now found lower energy states after only few minutes
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CPU time, for all four chains. For the longer ones, the tr
ground state energies are indeedmuch lower than those
found in Ref.@18#, see Table II.

Note the very low temperatures needed to fold the v
longest chains in an optimal time. If we would be interest
in excited states, higher temperatures would be better.
instance, to findE5266 for the 136-mer~which is one unit
below the lowest energy reached in Ref.@18#!, it took just 2.7
s/hit on the DEC 21264 when using exp(1/T)540.

~f! The only case where we could not find a know
ground state is a 3D HP sequence of length 88 given in R
@11#. As shown there, it folds into an irregularb/a barrel
with Emin5272. The difficulties of PERM with this se
quence are easily understood by looking at the configura
shown in Ref.@11#. The nucleus of the hydrophobic core
formed by amino acids Nos. 36–53. Before its formation
growth algorithm starting at either end has to form very u
stable and seemingly unnatural structures which are st
lized only by this nucleus, a situation similar to the 64-m
of Ref. @12#. In order to fold also this chain, we would hav
either to start from the middle of the chain~as done in Ref.
@9# for some sequences! or use some other heuristics whic
help the formation of the hydrophobic core. Since we wan
our algorithm to be as general and ‘‘blind’’ as possible, w
did not incorporate such tricks@27#.

A more detailed discussion of our algorithm, the resu
and comparison with other methods is given elsewhere@25#.
A list containing all sequences for which we found improv
lowest energy configurations is given in Table II.

In the present paper we presented an improved versio
PERM which is a depth-first implementation of the ‘‘go
with-the-winners’’ strategy~or sequential importance sam
pling with resampling!. The main improvement over old
3-3
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PERM is that we now do not makeidentical clonesof high-
weight ~partial! configurations, but we branch such that ea
continuation is forced to be different. We do not expect t
to have much influence for systems at high temperatures
as we showed, it leads to substantial improvement at v
low temperatures.

Comparing our results to previous work, we see that
found the known lowest energy states inall cases but one
Moreover, whenever we could compare with previous C
times, the comparison was favorable for our improved al
rithms, except for the CG method of Beutler and Dill@11#.
But we should stress that the latter is very specific to
chains, uses strong heuristics regarding the formation
hydrophobic core, and does not give correct Boltzma
weights for excited states. All that is not true for our metho
ra
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d

d
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Although our method could be used for a much wid
range of applications~see Ref. @31# for applications of
PERM!, we presented here only results for heteropolym
with two types of monomers and the simplest nontrivial
teractions on the square and simple cubic lattices. But
applied it also successfully to the HP model on the FC
lattice, to off-lattice heteropolymers, and to lattice mod
with more than two types of monomers~to be published!. We
hope that our results will also foster applications to mo
realistic protein models. We showed only results for low
energy configurations, but we should stress that PERM is
only an optimization algorithm. It also gives information o
the full thermodynamic behavior. We skipped this here sin
finding ground states is the most difficult problem, in ge
eral, and sampling excited states is easy compared to it.
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